Detection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
author
Abstract:
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasive, is of crucial importance for publichealth. Raman spectroscopy is a technique that can fulfil these requirements. The main goal of this work was to use Raman spectroscopy to differentiate between normal and carious human teethinvivo. The samples used in this study were collected by traditional human teeth. Method: An in vivo Raman spectroscopy system andspecialized fiber optic probe has been designed to obtain spectra from tissue. Theseprobes are filtered to reduce the background signal from the fiber optics and the collection fiberutilizes beam steering to optimize the collection effectiv. Results: In order to detect any demineralization and carious versus sound pit and fissure enamel, the spectral data sets are analyzed by the proposed scheme to demonstrate the utility of generalized 2D correlation spectra. Potential applications of this 2D correlation approach are then explored. The Raman spectra in the normal tissue showed thepresence of vibrational bands in 437.87 cm-1, 581.89 cm-1, 953.89 cm-1 and 1054.73 cm-1 with smaller intensity than in the carious spectra. Image construction from the peak intensity produced chemical maps of apatite concentration.Conclusion: Such two-dimensional correlation spectra emphasize spectral features not readily observable in conventional one-dimensional spectra.No correlation is observed in mode-to-mode intensity fluctuations indicating that the changes inmode intensities are completely independent. Theoreticalcalculations provide convincing evidence that the fluctuationsare not the result of diffusion, orientation or local electromagnetic field gradients but rather are the result of subtle variations ofthe excited-state lifetime, energy and geometry of the molecule and producing a signature response for carious detection.Â
similar resources
Raman spectroscopy of human teeth using integrated optical spectrometers
We have designed an arrayed-waveguide grating in silicon oxynitride technology for the detection of Raman signals from tooth enamel in the spectral region between 890 nm and 912 nm. The detected signals for both parallel and cross polarizations are used to distinguish between healthy and carious regions on the tooth surface of extracted human teeth. Our experimental results are in very good agr...
full textGlucose and Froctose Detection Using Raman Spectroscopy and Plasmonic Substrates Coated with Gold Nanoparticles
This article has no abstract.
full textArrayed Waveguide Grating for Polarized Raman Spectroscopy of Human Teeth
We designed an arrayed-waveguide grating spectrometer for the detection of early dental caries in teeth through polarized Raman spectroscopy. Measurement results on extracted human teeth demonstrate the feasibility of the approach. (Abstract) Keywords-component; Raman spectroscopy; integrated optics;
full textRaman Spectroscopy and its Applications in Medicine and Detection of Viruses
This article has no abstract.
full textMonitoring guanidinium-induced structural changes in ribonuclease proteins using Raman spectroscopy and 2D correlation analysis.
Assessing the stability of proteins by comparing their unfolding profiles is a very important characterization and quality control step for any biopharmaceutical, and this is usually measured by fluorescence spectroscopy. In this paper we propose Raman spectroscopy as a rapid, noninvasive alternative analytical method and we shall show this has enhanced sensitivity and can therefore reveal very...
full textMy Resources
Journal title
volume 9 issue 2
pages -
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023